Stable Oxygen and Carbon Isotopic Compositions of Lates stappersii Otoliths from Lake Tanganyika, East Africa

2007 ◽  
Vol 33 (4) ◽  
pp. 806-815 ◽  
Author(s):  
Aboubakar Sako ◽  
Kenneth G. MacLeod ◽  
Catherine M. O'Reilly
2008 ◽  
Vol 402 (2-3) ◽  
pp. 184-191 ◽  
Author(s):  
L. Campbell ◽  
Piet Verburg ◽  
D.G. Dixon ◽  
R.E. Hecky
Keyword(s):  
Food Web ◽  

2012 ◽  
Vol 12 (4) ◽  
pp. 9079-9124
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
J. Li ◽  
Y. L. Sun ◽  
...  

Abstract. Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3) were double those in late June (926 ± 574 ng m−3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, 403 ng m−3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%). In contrast, isoprene SOC was the main contributor (6.6%) to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6‰ to −23.2‰, mean −25.0‰) were lower than those (−23.9‰ to −21.9‰, mean −22.9‰) in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic molecular compositions and stable carbon isotopic compositions of aerosol particles in the troposphere over North China Plain.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Tetsumi Takahashi ◽  
Stephan Koblmüller

Lake Tanganyika is the oldest of the Great Ancient Lakes in the East Africa. This lake harbours about 250 species of cichlid fish, which are highly diverse in terms of morphology, behaviour, and ecology. Lake Tanganyika's cichlid diversity has evolved through explosive speciation and is treated as a textbook example of adaptive radiation, the rapid differentiation of a single ancestor into an array of species that differ in traits used to exploit their environments and resources. To elucidate the processes and mechanisms underlying the rapid speciation and adaptive radiation of Lake Tanganyika's cichlid species assemblage it is important to integrate evidence from several lines of research. Great efforts have been, are, and certainly will be taken to solve the mystery of how so many cichlid species evolved in so little time. In the present review, we summarize morphological studies that relate to the adaptive radiation of Lake Tanganyika's cichlids and highlight their importance for understanding the process of adaptive radiation.


Sign in / Sign up

Export Citation Format

Share Document